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Removal of wavelet dispersion from ground-penetrating radar data

James D. Irving∗ and Rosemary J. Knight∗

ABSTRACT

Wavelet dispersion caused by frequency-dependent
attenuation is a common occurrence in ground-
penetrating radar (GPR) data, and is displayed in the
radar image as a characteristic “blurriness” that in-
creases with depth. Correcting for wavelet dispersion
is an important step that should be performed before
GPR data are used for either qualitative interpretation
or the quantitative determination of subsurface electri-
cal properties. Over the bandwidth of a GPR wavelet, the
attenuation of electromagnetic waves in many geologi-
cal materials is approximately linear with frequency. As
a result, the change in shape of a radar pulse as it prop-
agates through these materials can be well described us-
ing one parameter, Q∗, related to the slope of the linear
region. Assuming that all subsurface materials can be
characterized by some Q∗ value, the problem of estimat-
ing and correcting for wavelet dispersion becomes one
of determining Q∗ in the subsurface and deconvolving
its effects using an inverse-Q filter. We present a method
for the estimation of subsurface Q∗ from reflection GPR
data based on a technique developed for seismic attenu-
ation tomography. Essentially, Q∗ is computed from the
downshift in the dominant frequency of the GPR signal
with time. Once Q∗ has been obtained, we propose a
damped-least-squares inverse-Q filtering scheme based
on a causal, linear model for constant-Q wave propaga-
tion as a means of removing wavelet dispersion. Tests on
synthetic and field data indicate that these steps can be
very effective at enhancing the resolution of the GPR
image.

INTRODUCTION

The attenuation of electromagnetic (EM) waves in many ge-
ological materials is strongly dependent upon frequency in the
ground-penetrating radar (GPR) frequency range; higher fre-
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quencies are attenuated much more quickly than lower ones
during propagation. As a result, the GPR wavelet often un-
dergoes a significant change in shape as it travels through the
subsurface, and reflections received at later times are notice-
ably broader than those received at earlier times. This phe-
nomenon is known as wavelet dispersion. In the GPR image, it
is displayed as a characteristic “blurriness” or lack of resolution
that increases with time/depth.

Correcting for wavelet dispersion in GPR data is important
for a number of reasons. Qualitatively, it is desirable to have
a high-resolution, well-focused GPR image for interpretation
purposes. Quantitatively, the removal of wavelet dispersion is a
necessary step before applying signal processing methods, such
as migration and spiking deconvolution, that are based upon
the assumption of a stationary wavelet. Indeed, past attempts
at applying these processing methods, which are standard in the
seismic industry, to dispersive GPR data have proven largely
unsuccessful (e.g., LaFlèche et al., 1991; Rees and Glover, 1992;
Powers, 1995). Further, since these methods ultimately lead to
the recovery of the earth’s reflectivity, it is clear that correcting
for wavelet dispersion is important before GPR data are used
for the estimation of subsurface electrical properties.

While numerous studies have addressed the issue of disper-
sion in GPR data and the importance of accounting for it when
forward modeling (e.g., Arcone, 1981; Powers and Olhoeft,
1994; Annan, 1996; Carcione, 1996; Xu and McMechan, 1997;
Hollender and Tillard, 1998), relatively little research has been
published on the problem of removing wavelet dispersion from
GPR data. Turner (1994) was the first to consider this prob-
lem, presenting an algorithm to correct for wavelet dispersion
in GPR data based on prior knowledge of the earth’s attenu-
ation behavior with frequency. In a subsequent paper, Turner
and Siggins (1994) showed that, over the bandwidth of a GPR
pulse, the attenuation of a number of earth materials could
be adequately characterized using a parameter known as Q∗,
which is closely related to the seismic quality factor, Q. Baño
(1996a,b) also justified theoretically the use of a constant-Q
assumption in GPR under certain conditions, and presented
inverse-Q filtering as a means of removing wavelet dispersion.

960



Removal of Wavelet Dispersion 961

What remains absent from all of these publications, however,
is an effective method for estimating the frequency-dependent
attenuation behavior of the earth from GPR data. Clearly, this
must be known before we can correct for wavelet dispersion.
A convincing field example illustrating the importance of re-
moving wavelet dispersion from GPR data is also absent from
the literature.

In this paper, we investigate further the results of Turner
and Siggins (1994) and conclude that the frequency-dependent
attenuation behavior of many geological materials can be ad-
equately described using their parameter, Q∗, over the band-
width of a GPR wavelet. Assuming that all materials encoun-
tered in the subsurface can be characterized in this manner, the
problem of estimating and correcting for wavelet dispersion in
GPR data becomes one of determining subsurface Q∗ and de-
convolving its effects using an inverse-Q filter. Building on the
frequency shift method of Quan and Harris (1997), we develop
a practical method for Q∗ estimation from reflection GPR data
that involves examination of the change in frequency content of
a data set with time. We next introduce a damped-least-squares
inverse-Q filtering scheme based on a causal, linear model for
constant-Q wave propagation as an effective means of correct-
ing for wavelet dispersion. As an example, we show the suc-
cessful application of these techniques to a 100-MHz field data
set collected near Langley, British Columbia, Canada.

ELECTRICAL PROPERTIES OF GEOLOGICAL MATERIALS

Relevant equations

Away from the immediate vicinity of the transmitter an-
tenna, radar waves in the subsurface can be approximated by
plane waves. For monochromatic EM plane waves traveling in
the z-direction, we have

Ẽ(z, t) = Ẽ0ei (ωt−kz), (1)

where Ẽ is the complex electric field vector, Ẽ0 is the complex
amplitude containing the wave polarization and phase, ω is the
angular frequency, and

k = ω

v
− iα (2)

is the wavenumber.
We adopt the convention of Fuller and Ward (1970) and

define the two properties governing EM wave propagation in
earth materials as the complex dielectric permittivity, given by

ε∗(ω) = ε′(ω)− i ε′′(ω), (3)

and the complex electrical conductivity, given by

σ ∗(ω) = σ ′(ω)+ iσ ′′(ω). (4)

At GPR frequencies, the electrical conductivity is assumed to
be a fixed, frequency-independent, real value equal to the dc
conductivity (Keller, 1987; Olhoeft and Capron, 1994; Xu and
McMechan, 1997). Thus, we have

σ ′(ω) = σdc, (5)

σ ′′(ω) = 0. (6)

Note that the above formulation neglects any dependence of
EM wave propagation on the magnetic permeability µ. Most

geological materials encountered with GPR do not contain sig-
nificant amounts of magnetic materials. We have thus chosen
to treat µ as constant and equal to its value in free space, µ0

(Topp et al., 1980; Xu and McMechan, 1997; Hollender and
Tillard, 1998).

The phase velocity, v, and attenuation, α, in equation (2) are
now given by the following expressions:

v =
µ0εef

2

√
1+

(
σef

ωεef

)2

+ 1

1/2

, (7)

α = ω
µ0εef

2

√
1+

(
σef

ωεef

)2

− 1

1/2

, (8)

where εef and σef are the real-valued, effective, dielectric
permittivity and electrical conductivity, respectively, given as
follows:

εef = ε′(ω), (9)

σef = σdc+ ωε′′(ω). (10)

An important parameter in EM applications is the loss
tangent, given by

tan δ = σef

ωεef
. (11)

For GPR to serve as an effective tool for high-resolution sub-
surface imaging, the loss tangent must be less than 1. This
corresponds to the case where energy storage mechanisms
(i.e., polarization) dominate over energy loss mechanisms (i.e.,
conduction).

EXPERIMENTAL RESULTS

Using laboratory measurements, Turner and Siggins (1994)
showed that, over the bandwidth of a GPR wavelet, the atten-
uation of EM waves in a number of dry sands and rocks could
be adequately characterized as a linear function of frequency.
Since velocity dispersion is often small over the GPR range and
can be calculated from the attenuation behavior by invoking
causality (e.g., Futterman, 1962; Aki and Richards, 1980), they
concluded that the change in shape of a radar pulse in these
materials could be well described using a single parameter. This
parameter is related to the slope of the attenuation versus fre-
quency curve in the region of interest. In order to assess the
generality of these results, we have used published dielectric
permittivity data to calculate the attenuation and velocity for a
number of other geological materials over the radar frequency
range of 10 to 1000 MHz.

Figure 1 shows the calculated attenuation and velocity for
a variety of soils and rocks whose permittivity measurements
were fitted using the Cole-Cole formula (Cole and Cole, 1941).
We used the published dielectric fitting parameters to ob-
tain permittivity versus frequency, which was then used in
equations (7)–(10) to obtain the velocity and attenuation as
a function of frequency. The Cole-Cole formula is derived
through the addition of a distribution parameter over the time
constant in the Debye (1945) relaxation equation. It has been
used with much success in the GPR frequency range to fit
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permittivity measurements (Taherian et al., 1990; Olhoeft and
Capron, 1993), and is given by

ε∗(ω) = ε∞ + εs − ε∞
1+ (iωτ )a

, (12)

where ε∞ and εs are the high- and low-frequency limiting val-
ues of ε ′(ω), τ is the time constant, and a is the distribution
parameter that ranges between 0 and 1.

Figure 2 shows the calculated attenuation and velocity ver-
sus frequency for a variety of rocks whose permittivity mea-
surements were fitted using the Jonscher parameterization
(Hollender and Tillard, 1998). Based on the work of Jonscher
(1977), this parameterization assumes a power law dependence
upon frequency of the real and imaginary parts of the permit-
tivity, and can be expressed as

ε∗(ω) = εr

(
ω

ωr

)n−1[
1− cot

(
nπ

2

)]
+ ε∞, (13)

FIG. 1. Attenuation and velocity calculated as a function of frequency for a variety of geological materials whose
dielectric permittivities were fitted using the Cole-Cole formula: (1) sandy soil (natural state), (2) sandy soil
(saturated) (Olhoeft and Capron, 1993); (3) clay soil (dry), (4) clay soil (30.18 wt% water) (Olhoeft and Capron,
1994); (5) and (6) limestone saturated with brine, (7) and (8) sandstone saturated with brine (Taherian et al.,
1990).

FIG. 2. Attenuation and velocity calculated as a function of frequency for a variety of rocks whose dielectric
permittivities were fitted using the Jonscher parameterization: (1) limestone (freshwater saturated), (2) andesite,
(3) shale, (4) gabbro, (5) siltstone, (6) granite (freshwater saturated), (7) granite (dry), (8) schist (measured
perpendicular to the schistocity) (Hollender and Tillard, 1998).

where εr = ε ′(ω)− ε∞ at the reference frequency ωr , and n− 1
is the power law exponent.

Note in Figures 1 and 2 that, in general, the attenuation
displays a high level of frequency dependence over the GPR
range. This indicates that there will be significant broadening
in the GPR wavelet during propagation through these materi-
als. The slow increase in velocity over most of the GPR band
shows that the change in shape of a radar pulse due to velocity
dispersion alone will be minimal in these substances.

Of importance in our study are the characteristics of the
attenuation and velocity curves in Figures 1 and 2 over the
bandwidth of a GPR wavelet. Current GPR systems radi-
ate wavelets with bandwidths of approximately two octaves
(Hollender and Tillard, 1998). Over any two octave range,
Figures 1 and 2 demonstrate that the attenuation can be rea-
sonably approximated as a linear function of frequency, and the
velocity can be well characterized as constant. Thus, in accor-
dance with Turner and Siggins (1994), a reasonable approach is
to quantify wavelet dispersion in these materials using a single
parameter.



Removal of Wavelet Dispersion 963

Q and Q∗ parameters

To describe the change in shape of a GPR wavelet in mate-
rials whose attenuation and velocity behaviors are similar to
those in Figures 1 and 2, Turner and Siggins (1994) introduced
the parameter Q∗, defined as

Q∗ = 1
2v

(
1α

1ω

)−1

, (14)

where, in the region of interest (i.e., the bandwidth of the GPR
wavelet), v is the approximately constant value for the velocity,
and 1α/1ω is the slope of the attenuation versus frequency
curve. Q∗ is a generalization of the quality factor, Q, commonly
seen in seismic studies (e.g., Aki and Richards, 1980):

Q = ω

2vα
. (15)

When the line approximating the attenuation extrapolates to
zero at zero frequency, the two parameters are equivalent.
Also, Q∗ and Q describe the same change in wavelet shape
that occurs during propagation, except for a difference in total
amplitude (Turner and Siggins, 1994); thus values for Q∗ can
be compared directly with those for Q in regards to wavelet
dispersion. Based on their laboratory measurements, Turner
and Siggins concluded that Q∗ for GPR should lie somewhere
between 2 and 30. This is roughly an order of magnitude lower
than the range of values typically given for seismic Q, which in-
dicates that wavelet dispersion is far more pronounced in GPR
data than in seismic data.

Based on the work of Turner and Siggins (1994) and the
results shown in Figures 1 and 2, we believe that Q∗ values cal-
culated over the bandwidth of a GPR wavelet can adequately
describe wavelet dispersion in many, if not most, geological
materials encountered with GPR. Consequently, we make the
fundamental assumption in this work that all subsurface mate-
rials can be characterized in this manner. When this is the case,
the problem of estimating and correcting for wavelet dispersion
in GPR data becomes one of determining Q∗ in the subsurface
and deconvolving its effects using an inverse-Q filter.

It should be noted that, although constant-Q is often used
to describe seismic wave propagation and attenuation (e.g.,
Strick, 1967; Stacey et al., 1975; Kjartansson, 1979), we must
use Q∗ in the GPR case because the line approximating the at-
tenuation of EM waves in earth materials does not, in general,
pass through the origin (see Figures 1 and 2). For EM waves,
Q is closely related to the loss tangent as follows (von Hippel,
1962):

Q = 1
tan δ

. (16)

This quantity has been shown in a number of studies to be
rarely constant in the GPR range (Xu and McMechan, 1997;
Hollender and Tillard, 1998). Although Bano (1996a) justified
the use of a constant-Q assumption for GPR, we believe that
this result lacks sufficient generality because he neglected both
the dc conductivity and the high-frequency limiting value of the
real part of the permittivity, ε∞, in his derivations.

ESTIMATION OF QQ∗ FROM GPR DATA

The frequency shift method

A number of methods have been mentioned in the liter-
ature for the estimation of subsurface Q or Q∗ from GPR
data. Turner (1994), for example, stated that it may be possible
to obtain Q∗ from pulse-width or rise-time measurements, as
has been done in seismic laboratory and tomography exper-
iments (Gladwin and Stacey, 1974; Kjartansson, 1979). Baño
(1996a), on the other hand, proposed that Q could be deter-
mined in GPR by comparing wavelets recorded at the receiver
with groups of synthetically attenuated ones. Another common
method for Q estimation in seismic studies is the spectral ratio
technique (Toksöz et al., 1979). Although all of these methods
are completely valid in theory, we have found they are imprac-
tical for use on most reflection GPR data sets because they re-
quire the accurate isolation of individual reflections on a trace.
Unless reflection events are spaced widely apart in time, and
noise levels in the data are very low, this is an extremely diffi-
cult, if not impossible, task. To avoid this problem, we propose
a technique for the estimation of subsurface Q∗ from GPR data
that builds on the frequency shift method of Quan and Harris
(1997).

Developed for seismic attenuation tomography, the fre-
quency shift method uses the principle that, as a wavelet prop-
agates and broadens due to frequency-dependent attenuation,
the centroid of its amplitude spectrum undergoes a gradual
downshift in frequency. This downshift is related to Q (and
thus Q∗) as follows:

fS− fR = C
∫

ray

π

vQ
d`, (17)

where the integral is taken along the raypath, and fS and fR

are the centroid frequencies of the source and received wavelet
amplitude spectra, S( f ) and R( f ), given by

fS =

∫ ∞
0

f S( f )d f∫ ∞
0

S( f )d f
, (18)

fR =

∫ ∞
0

f R( f )d f∫ ∞
0

R( f )d f
. (19)

For a source spectrum that is approximately Gaussian in shape,
Quan and Harris (1997) showed that the parameter C in
equation (17) is equal to the spectrum variance, defined as

σ 2
S =

∫ ∞
0

( f − fS)2S( f )d f∫ ∞
0

S( f )d f
, (20)

which remains constant during propagation. They also derived
expressions for C for boxcar and triangular-shaped source
spectra.

To formulate these results for the estimation of Q∗

from reflection GPR data, we first assume that the only
cause of amplitude spectral variation in a propagating GPR
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pulse is frequency-dependent attenuation. To a large extent,
geometrical energy spreading is independent of frequency
(Turner and Siggins, 1994). In addition, although it has been
shown that reflection and transmission at subsurface interfaces
can result in significant changes in the shape of a radar wavelet
(Hollender and Tillard, 1998), we believe that this is the ex-
ception, rather than the norm, in environments well-suited to
GPR. It is also unlikely that interface reflection and transmis-
sion effects will cause the progressive broadening of arrivals
down a trace that is characteristic of frequency-dependent at-
tenuation.

It should be noted that we cannot neglect the effects of scat-
tering in GPR data; both multipathing and volume scattering
within a medium can result in significant pulse broadening
with time down a trace (O’Doherty and Anstey, 1971; Olhoeft,
1998). Consequently, any estimates of Q∗ that we obtain will
contain a contribution from the component of scattering atten-
uation that is linear with frequency. This is not a problem for
our purposes, however, because inverse-Q filtering will sim-
ply correct for the combined effects of intrinsic and scattering
attenuation.

Consider now the case of two horizontal interfaces in the
subsurface separated by a layer of constant Q∗ material. Using
equation (17), the difference between the centroid frequen-
cies of the two wavelets reflected from these interfaces can be
expressed as

fR2 − fR1 = −
Cπ

Q∗
(t2 − t1), (21)

where t1 and t2 refer to the arrival times of the wavelets on a
trace. If we now make the assumptions that (1) traces recorded
using GPR contain a high density of reflections in time (this
is often the case), and (2) the subsurface can be adequately
described by one or a small number of general values for Q∗

with depth, then the above result yields

Q∗ = −Cπ

(
1 f

1t

)−1

. (22)

That is, general values for subsurface Q∗ can be obtained from
reflection GPR data from the slope of a best-fit line to a cen-
troid frequency versus time curve. This curve is determined by
calculating the centroid frequency of the local amplitude spec-
trum at each time down a trace. In the situation where only
one general value for Q∗ is present with depth, the curve will
exhibit only one slope. If two regions having considerably dif-
ferent Q∗ values are present in the subsurface, then the curve
should exhibit two distinct slopes, and so on. Notice that, by
estimating Q∗ in this manner, we largely avoid the problems as-
sociated with isolating individual reflections on a trace because
Q∗ is not obtained from particular reflection events. Instead,
our method estimates Q∗ from the general trend in spectral
character of a GPR trace, averaging over all possible ampli-
tude spectra.

Time-frequency analysis

To obtain the amplitude spectrum at each time down a
trace (i.e., a trace’s time-frequency representation), we use the
S-transform (Stockwell et al., 1996; Theophanis and Queen,
2000). The S-transform examines the time-frequency charac-
ter of a signal by integrating that signal at each point in time

with a series of windowed harmonics of various frequencies.
This is expressed as follows:

ST( f, τ ) =
∫ ∞
−∞

h(t)
| f |√
2π

e−
(τ−t)2 f 2

2 e−i 2π f t dt, (23)

where h(t) is the signal being analyzed, τ is a translation pa-
rameter, and the two exponentials represent the window and
harmonic functions, respectively. To compute the transform,
the window function is shifted in time by τ down the signal
and a range of frequencies is repeatedly analyzed. The win-
dow function, a Gaussian with variance 1/ f 2, scales in width
according to the frequency being examined.

We have found that, for Q∗ estimation using our variation of
the frequency shift method, the S-transform is superior to other
time-frequency analysis tools such as the short-time Fourier
transform (STFT) and the wavelet transform (WT). Because
it employs a constant window width for all frequencies, the
STFT is not well-suited to the analysis of signals that con-
tain different-scale features, such as a dispersive GPR trace. In
other words, one may question what window width is appro-
priate for the analysis of a trace whose reflections gradually
change in scale as time increases. Also, short time-scale fea-
tures such as spurious noise and interference effects tend to
become included in many spectra down a trace with the STFT,
and therefore have the potential to significantly influence es-
timates of Q∗. With the WT, we avoid these shortcomings be-
cause the analysis of a signal is performed using scaled and
translated versions of a “mother wavelet” function; however,
this also has limitations as it involves the rather difficult deci-
sion of choosing the mother wavelet, and also the problem of
having to convert measures of scale into frequency.

The S-transform can be regarded as a hybrid of the WT and
the Gabor transform, a version of the STFT in which a Gaussian
window function is employed (Gabor, 1946). Like the STFT,
the S-transform analyzes a signal using windowed harmonics,
and thus yields a true measure of frequency. Like the WT, fea-
tures are analyzed with a resolution suited to their scale be-
cause the effective width of the Gaussian window changes with
frequency. High frequencies are analyzed using a short time
window with the S-transform; low frequencies are analyzed
using longer time windows. Many researchers also believe that
the Gaussian window produces the optimum spectral shape for
a given bandwidth (e.g., Deregowski, 1971).

Synthetic example

Figure 3 shows the construction of a very simple, synthetic
GPR trace that we used to test our Q∗ estimation procedure.
First, a reflectivity series was created by randomly distribut-
ing 40 reflection coefficients in time between 20 and 350 ns
(Figure 3a). Using the constant-Q transfer function given by
equation (27), this reflectivity series was then attenuated as-
suming a single subsurface value of Q∗ = 30. The attenuated
series, which represents the impulse response of a lossy earth,
is shown in Figure 3b. Note how the attenuated reflection spikes
broaden significantly as time increases; near the end of the sig-
nal, many of them become indistinguishable from one another.
To obtain the synthetic trace in Figure 3c, the attenuated series
was convolved with a zero-phase wavelet having a Gaussian
amplitude spectrum with −20 dB set at 80 and 320 MHz.
This “Gaussian wavelet” has a peak frequency of 200 MHz,
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and a bandwidth of approximately two octaves. Based on our
observations, we believe that it reasonably approximates a typ-
ical 200-MHz GPR pulse. It should be noted that, by choosing
Q∗ = 30, we have designed a relatively rigorous test for our es-
timation procedure, as this is the upper limit of the range for
Q∗ suggested by Turner and Siggins (1994). Accurate determi-
nation of Q∗ will be most difficult for higher Q∗ values, when
the slope of the centroid frequency versus time curve is small.

Figure 4 shows the time-frequency representation of the syn-
thetic trace in Figure 3c, obtained using the S-transform. In the
time-frequency plane, a clear downshift in the dominant fre-
quency of the trace with time is evident as a result of wavelet
dispersion; the dominant frequency drops from 200 MHz to
approximately 100 MHz over the interval shown. This figure
also demonstrates the resolution properties of the S-transform.
High frequencies are resolved well in time but poorly in fre-
quency because a narrow analyzing window is used. Low fre-
quencies, on the other hand, can be seen to be resolved well in
frequency but poorly in time due to the use of a wide analyz-
ing window. We have found that these resolution properties do
not significantly affect the estimates of Q∗ obtained using our
method.

The S-transform results from Figure 4 were fed into a dis-
cretized version of equation (18) in order to calculate the cen-
troid frequency of the synthetic trace in Figure 3c at each point
in time. Figure 5a shows the resulting centroid frequency versus
time curve. Because the trace contains a high density of reflec-
tions and there is only one value for Q∗ in the subsurface, the
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FIG. 3. Creation of the synthetic GPR trace used to test our Q∗
estimation procedure. (a) random reflectivity series, (b) reflec-
tivity series in (a) attenuated using constant Q∗ = 30, (c) the
synthetic GPR trace, obtained by convolving the attenuated
reflectivity series in (b) with a 200-MHz Gaussian wavelet (see
text).

downshift exhibited by this curve is approximately linear. To
estimate Q∗, a least-squares regression line was fit to the curve.
The slope of this line (shown on the plot) is −0.31 MHz/ns.
This value, along with the known value of C= σ 2= 3125 for
our input Gaussian wavelet, were used in equation (22) to ob-
tain Q∗ = 31.7. Since this result is very close to the true value of
Q∗ = 30, it can be concluded that our Q∗ estimation procedure
was very successful for this example.

To gain further insight into our Q∗ estimation algorithm, we
also computed the centroid frequency versus time curves for
the synthetic trace in Figure 3c after inverse-Q filtering to re-
move wavelet dispersion. Figure 5b shows the curve obtained
after filtering using the correct value of Q∗ = 30. Because we
have properly removed wavelet dispersion from the trace, this
curve is approximately flat. For comparison, Figures 5c and 5d
show the centroid frequency versus time curves after inverse-Q
filtering using Q∗ = 20 and Q∗ = 40, respectively. Here, we see
that inverse-Q filtering with too low a value for Q∗ will over-
compensate for frequency-dependent attenuation, resulting in
a centroid frequency versus time curve that has positive slope
(i.e., high frequencies are preferentially boosted too much in
the filtered output). Conversely, inverse-Q filtering using a
value for Q∗ that is too high results in a centroid frequency
curve with negative slope, indicating that we have only par-
tially corrected for wavelet dispersion. These results suggest
that we can verify our success in removing wavelet dispersion
from a trace by looking at the centroid frequency versus time
curve of the trace after inverse-Q filtering.

It is important to note that there are a number of sources of
potential error in our Q∗ estimation procedure. First, it can be
seen from Figure 5 that centroid frequency versus time curves,
in general, show a high degree of variability about the main
trend, and also tend to dive towards zero in regions of the sig-
nal where there are no reflections (best shown around 190 and
250 ns). This can clearly influence the slope of a best-fit line,
thus affecting estimates of Q∗. However, we can significantly

FIG. 4. S-transform time-frequency representation of the syn-
thetic trace from Figure 3. Only the region of the trace contain-
ing signal (from 20 to 350 ns) was analyzed. Individual spectra
at each time have been normalized to their maximum values
in order to better show the downward trend in the dominant
frequency of the signal with time.
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reduce errors related to these phenomena if we compute one
best-fit line through a number of centroid frequency versus
time curves obtained from different traces, but representative
of the same subsurface material. Secondly, in practice, we will
not know beforehand the value of C in equation (22), which
in the case of our synthetic example was simply the variance
of the source wavelet. Thus C must be estimated from our
data, which could be a significant source of error in Q∗. How-
ever, even if our estimate of Q∗ is inaccurate, we can easily
check whether we have properly removed wavelet dispersion
by determining whether the centroid frequency versus time
curve after inverse-Q filtering is indeed flat.

INVERSE-QQ FILTERING

Constant-Q wave propagation

As mentioned previously, Q∗ and Q describe the same
change in wavelet shape that occurs during propagation, ex-
cept for a difference in total amplitude. As a result, once Q∗ in
the subsurface has been determined, we can correct for wavelet
dispersion in GPR data by inverse-Q filtering, a technique com-
monly applied to seismic data in order to remove the effects of
propagation through constant-Q materials. To satisfy causal-
ity, frequency-dependent attenuation must be accompanied
by velocity dispersion (Aki and Richards, 1980). Therefore,
any realistic inverse-Q filter must correct for slight changes in
wavelet shape caused by variations in velocity with frequency,
in addition to wavelet broadening resulting from frequency-
dependent attenuation. To inverse-Q filter GPR data, we con-
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FIG. 5. Centroid frequency versus time curves for the synthetic trace in Figure 3, before and after inverse-Q
filtering to remove wavelet dispersion: (a) before inverse-Q filtering (slope of best-fit line is −0.31 MHz/ns),
(b) after inverse-Q filtering using the correct value of Q= 30, (c) after inverse-Q filtering using Q= 20, (d) after
inverse-Q filtering using Q= 40.

sider a causal, linear model for constant-Q wave propagation
based on a power law formula for the wavenumber k (e.g.,
Kjartansson, 1979; Bickel and Natarajan, 1985), which yields
attenuation nearly linear with frequency and velocity nearly
constant over a wide bandwidth:

v = v0

(
ω

ω0

)γ
, (24)

α = ω

2v0 Q

(
ω

ω0

)−γ
, (25)

where v0 is the phase velocity at the arbitrary reference fre-
quency ω0, and γ is given by

γ = 2
π

tan−1
(

1
2Q

)
. (26)

Substituting the above results into the wave propagation op-
erator e−ikz allows us to formulate the following frequency do-
main expression for the forward-Q propagation filter, which ac-
counts for all effects of velocity and attenuation in a constant-Q
medium:

U(ω, t j ) = exp
[
−t j ω

(
ω

ω0

)−γ( 1
2Q
+ i

)]
. (27)

Equation (27) is the transfer function that turns an impulse at
time t = 0 into an attenuated impulse arriving around time t j

on a trace. For the case of no attenuation (i.e., infinite Q and
hence γ = 0), the expression becomes simply a linear phase
shift which translates the impulse at t = 0 to time t j .
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Filter design

Note that the inverse of equation (27) is an increasing ex-
ponential in time and frequency. To design a stable inverse-Q
filter in the presence of noise, we therefore use the damped-
least-squares inverse of this equation, given by (e.g., Berkhout,
1982)

H(ω, t j ) = U ∗(ω, t j )
|U(ω, t j )|2 +1(ω)

, (28)

where ∗ and |·| denote the complex conjugate and modulus, re-
spectively, and 1(ω) is a damping or regularization parameter
whose value controls the trade-off between having an accurate
inverse and avoiding the amplification of noise in the filtered
output. From a Bayesian perspective, assuming a Gaussian
model for the noise in our GPR data and also a Gaussian prior
for the attenuation-free trace, the regularization parameter can
be viewed as the ratio of the noise variance to the variance of
the attenuation-free trace. This may also be interpreted as the
inverse square of the signal-to-noise ratio in our data at time
t = 0, before any attenuation has occurred. For this reason, we
define

1(ω) = 1
SN0(ω)2

, (29)

where SN0(ω)2 is an estimate of the initial signal-to-noise ratio
at t = 0 as a function of frequency. Note that, by defining the
regularization parameter in this manner, we can easily avoid
boosting regions of the input trace’s frequency spectrum that
are outside the bandwidth of the GPR source wavelet;1(ω) is
simply made large for these frequencies.

Just as U(ω, t j ) converts an impulse at t = 0 into an atten-
uated impulse arriving around t = t j , H(ω, t j ) turns an atten-
uated impulse around time t j into its corresponding reflection
spike at t = 0. Thus, to perform inverse-Q filtering, H(ω, t j ) is
computed for each time t j down the input trace. Each H(ω, t j )
is then applied separately to the trace, and the samples at t = 0
are extracted. These samples are then put together to form the
inverse-Q filtered output. It should be noted that variations in
Q∗ with depth can be easily incorporated into our inverse-Q
filter through the effective Q approach, whereby an effective
Q value calculated for each depth is used to represent the at-
tenuation effect of the variable Q structure above that depth
(Varela et al., 1993).

Synthetic example

We now show the results of applying our inverse-Q filter
to a synthetic attenuated reflectivity series with added noise.
Figure 6a shows the original reflectivity series, consisting of 12
reflection spikes of random amplitude separated by different
amounts in time. As before, this series was attenuated assum-
ing a constant value of Q∗ = 30. Gaussian random noise with a
standard deviation equal to 2% of the maximum value of the
original reflectivity series was then added to create the trace
shown in Figure 6b. Figure 6c shows the result of inverse-Q fil-
tering the noisy attenuated reflectivity series using Q= 30 and
SN0(ω)= 50. The resolution of the trace is greatly improved
upon inverse-Q filtering. Reflections are greatly reduced in
width, and all of the individual spikes in the original reflec-
tivity series (with the exception of the one near 220 ns) can

be easily distinguished. There remains, however, a noticeable
amount of broadening in the reflections of Figure 6c, even after
the filtering. This is because, in the presence of noise, we can
never obtain a perfect inverse-Q filtered result; regions of a
trace’s time-frequency spectrum where noise is dominant can-
not be boosted in a stable manner. However, our inverse-Q
filter clearly does a good job of removing most of the wavelet
dispersion from the noisy input trace. Furthermore, in working
with real data, the shortcomings of inverse-Q filtering noisy
data (i.e., having a filtered result that still contains dispersion)
will not be as evident because we will be dealing with a finite
bandwidth wavelet, not an infinite bandwidth impulse.

APPLICATION TO FIELD DATA

The techniques described above for the estimation and
removal of wavelet dispersion in GPR data were applied
to a 100-MHz field data set collected near Langley, British
Columbia, Canada. The field site consists of an unconfined
sand and gravel aquifer underlain by a conductive clay, which
was not penetrated with the radar. The data were acquired us-
ing a Sensors & Software PulseEkko IV GPR system, with the
transmitter and receiver antennas separated a fixed distance of
1 m. A spatial sampling interval of 0.2 m and a time sampling
interval of 0.8 ns were used. Preprocessing included residual
median filtering to remove the low-frequency “wow” from the
radar data upon which the reflection signal is superimposed,
time-zero shifting to align traces in the data set on the first
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FIG. 6. Synthetic example showing application of our
inverse-Q filtering algorithm to a noisy, attenuated reflectivity
series: (a) input reflectivity series, (b) reflectivity series in (a) at-
tenuated using constant Q= 30 and 2% noise added, (c) noisy
attenuated series in (b) after inverse-Q filtering using Q= 30,
SN0(ω)= 50.
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arrival, and an approximate correction for geometrical energy
spreading. Since the ground along the survey line was flat, no
correction for topography was necessary. A constant velocity
of 0.1 m/ns was used to convert time into an approximate depth.

Figure 7 shows a section of the Langley data from 50 to
120 m where the top of the clay layer, which is marked by
rapid attenuation of the GPR signal, can be seen to increase
in depth from left to right. For this plot, a standard, frequency-
independent, time-varying, exponential gain was applied to the
data in an attempt to correct for attenuation. The presence of
wavelet dispersion in the data can be seen as a lack of resolution
or blurriness in the image that increases with depth. Clearly, a
more accurate frequency-dependent correction for attenuation
is needed. Given that most traces across the profile exhibit a
high density of reflections, and that the reflections all originate
from within a common subsurface unit (the sand and gravel
aquifer), the data set is a good candidate for Q∗ estimation
using our variation of the frequency shift method.

FIG. 7. Langley 100-MHz GPR data before correcting for
wavelet dispersion.

FIG. 8. Centroid frequency versus time curves for Langley data
for traces between 100 and 120 m, before correcting for wavelet
dispersion. Slope of best-fit line is −0.081 MHz/ns.

To estimate a general value for Q∗ in the sand and gravel
aquifer, 100 traces between 100 and 120 m (where the thickness
of the aquifer is greatest) were analyzed using the S-transform
over the approximate bandwidth of the 100-MHz GPR source
wavelet. This was estimated to lie between 20 and 180 MHz. A
smooth, time-varying exponential gain was applied to the data
before computing the transform to somewhat balance ampli-
tudes down the traces. Figure 8 shows the calculated centroid
frequency versus time curves for the 100 traces analyzed. Only
times between 20 and 350 ns were considered in order to avoid
the direct air and ground arrivals at the beginning of the traces,
and the regions dominated by noise at late times. All of the
curves can be seen to have a similar trend: they exhibit a signif-
icant downshift in time due to wavelet dispersion. This down-
shift was fitted using a single line having slope−0.081 MHz/ns.
Clearly, fitting all of the curves with one best-fit line yields a
much better estimate of the general slope than fitting centroid
frequency versus time curves individually. To determine the

FIG. 9. Langley 100-MHz GPR data after correcting for
wavelet dispersion by inverse-Q filtering, Q = 45.

FIG. 10. Centroid frequency versus time curves for Langley
data for traces between 100 and 120 m after correcting for
wavelet dispersion. Best-fit line is approximately flat.
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parameter C in equation (22), needed for the calculation of
Q∗, we assume that the spectrum of the 100-MHz GPR source
wavelet is approximately Gaussian in shape. Thus C can be
determined from the spectrum variance, which should remain
approximately constant during propagation (Quan and Harris,
1997). To estimate this parameter, variance values were com-
puted from the S-transform results using a discretized version
of equation (20). C was then computed from an average of
those values near the beginning of the traces where signal-
to-noise ratios were highest, the result being C= 1170. Using
equation (22), the above results yield an estimate of Q∗ = 45
for the sand and gravel aquifer.

Figure 9 shows the Langley data after inverse-Q filtering us-
ing Q= 45. There is a significant improvement in resolution
compared with Figure 7; events in the GPR image are now
“well-focused” in time and the widths of reflections at depth
have been noticeably reduced. There are no visible signs of
wavelet dispersion remaining in the inverse-Q filtered image.
By examining the data in detail, it can also be seen that all
events in Figure 9 correspond to events in Figure 7, and most
can be followed laterally from trace to trace. This indicates
that our inverse-Q filtering procedure has not produced any
significant artifacts. The next logical processing step to further
improve the resolution of the GPR image would be migration.
The data in Figure 9 are in severe need of migration, as indi-
cated by the numerous diffraction hyperbolas present in the
profile.

After properly correcting for wavelet dispersion, the slope
of a trace’s centroid frequency versus time curve should theo-
retically be reduced to zero. Figure 10 shows the 100 centroid
frequency versus time curves for the Langley data set from
100 to 120 m after inverse-Q filtering. A least-squares best-
fit line through these curves is also shown. Indeed, the trend
is nearly flat. It can thus be concluded that we have properly
corrected for wavelet dispersion in the Langley data set. It
should be noted that our value obtained for Q∗ in this exam-
ple is greater than the maximum value suggested by Turner
and Siggins (1994). This suggests that the range for radar Q∗

extends further than the range they propose.

CONCLUSIONS

In conclusion, the methods presented here, consisting of our
adaptation of the frequency shift method and inverse-Q filter-
ing, appear to provide a relatively robust and effective means
of removing wavelet dispersion from GPR data. This allows
us to significantly improve the resolution of the GPR image.
Because our means of estimating Q∗ avoids the need to isolate
individual reflections on a trace, it possesses advantages over
other more traditional methods for Q estimation. Further, our
technique allows the reliable determination of whether or not
we have properly removed wavelet dispersion from a data set;
a properly corrected trace should show no general trend in the
centroid frequency with time. Therefore, the absolute accuracy
of our Q∗ estimation method is not nearly as important as the
fact that we can use it to get a first estimate of Q∗. This esti-
mate can then be used as a starting point for inverse-Q filtering
in an iterative procedure to properly correct for wavelet dis-
persion. As mentioned previously, signal processing techniques
based on the assumption of a stationary wavelet, such as migra-
tion and spiking deconvolution, have been largely unsuccess-

ful in the past when applied to GPR data. After correcting for
wavelet dispersion, these techniques may allow us to success-
fully enhance even further the resolution of the GPR image.

It should be stressed that our adaptation of the frequency
shift method is capable only of providing general estimates of
Q∗ in the subsurface; a high degree of resolution for Q∗ with
depth cannot be obtained. For this reason, the results of our Q∗

estimation are best used for imaging purposes only and not for
the identification of layer properties and interpretation. One
means of overcoming these limitations might be to use bore-
hole attenuation tomography methods as a means of obtaining
more detailed estimates of subsurface Q∗. These could then be
used as a basis for more accurate inverse Q filtering and also
for identification/interpretation purposes.
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